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a  b  s  t  r  a  c  t

This  paper  presents  a comparative  study  of twelve  equivalent  circuit  models  for  Li-ion  batteries.  These
twelve  models  were  selected  from  state-of-the-art  lumped  models  reported  in the  literature.  The test
data used  is obtained  from  a battery  test  system  with  a climate  chamber.  The  test  schedule  is  designed
to  measure  key  cell  attributes  under  highly  dynamical  excitations.  The  datasets  were  collected  from  two
vailable online 12 October 2011
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types  of Li-ion  cells  under  three  different  temperatures.  The  multi-swarm  particle  swarm  optimization
algorithm  is used  to  identify  the  optimal  model  parameters  for the  two  types  of Li-ion  cells.  The  usefulness
of these  models  is then  studied  through  a comprehensive  evaluation  by examining  model  complexity,
model  accuracy,  and  robustness  of the  model  by applying  the  model  to  datasets  obtained  from  other  cells
of the  same  chemistry  type.
article swarm optimization

. Introduction

Hybrid electric vehicles (HEVs), plug-in hybrid electric vehi-
les (PHEVs) and battery electric vehicles (BEVs) are being actively
eveloped and deployed to achieve significant fuel consumption
nd carbon emission reductions in many markets throughout the
orld. Traction battery packs are presently the performance and

ost bottlenecks of these electrified vehicles. To ensure safe, reli-
ble and efficient operations of the traction batteries under the
ost demanding and grueling driving conditions, an effective bat-

ery management system (BMS) must be used. A key function of
he BMS  is to monitor the conditions and states of the traction
attery pack, such as State of Charge (SOC) and State-of-Health
SOH). Since these variables are not directly measurable by any
ensors, they need to be inferred, commonly from model-based
stimation algorithms [1–7]. Therefore, accurate battery models
re of utmost importance. In addition to providing accurate estima-
ions, it is important to strike a balance between model complexity
nd accuracy so that the models can be embedded in microproces-
ors and provide accurate results in real-time [8].  In other words,
t is important to have models that are accurate enough, and not
nnecessarily complicated.

Electrochemical models that aim to capture all key behaviors of

attery cells [9–11] often can achieve high accuracy. They are suit-
ble for understanding the distributed electrochemistry reactions
n the electrodes and electrolyte [8].  However, they typically deploy

∗ Corresponding author at: G041 Auto Lab., 1231 Beal Av., Ann Arbor, MI  48109-
133, USA. Tel.: +1 734 757 3563; fax: +1 734 757 3563.
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oi:10.1016/j.jpowsour.2011.10.013
© 2011 Elsevier B.V. All rights reserved.

partial differential equations with a large number of unknown
parameters. The complexity often leads to significant requirement
for memory and computation. In addition, they frequently run into
over-fitting problems due to their significant number of param-
eters and the model robustness under extrapolation is typically
poor—rendering their practical usefulness questionable. Hence,
PDE-based electrochemical models are not desirable for actual bat-
tery management in electrified vehicles—if lumped battery models
are accurate enough, they are likely to be the preferred choice.

Equivalent circuit battery models have been studied especially
for the purpose of vehicle power management control and bat-
tery management system development. They are lumped models
with relatively few number of parameters. For example, Plett
[2] proposed several lumped models, including the simple, zero-
hysteresis, one-state hysteresis, combined, and enhanced self
correcting (ESC) models. In [2],  test datasets of an HEV Li-polymer
cell was  used to compare these models. The resistance-capacitance
(RC) network based equivalent circuit models were also widely
studied, such as the first-order RC [12–14],  second-order RC
[15–17] and third-order RC models [18]. Dedicated elements
depicting the battery hysteresis behavior were sometimes added
to the RC models, such as the first-order RC model with hystere-
sis [19–21] and third-order RC model with hysteresis [22], etc. In
the literature, there were few studies comparing these commonly
used equivalent battery models. The goal of this paper is to system-
atically compare the practicality of these models, including model
complexity, model accuracy under both training and validation

data, and generalizability of these models to multiple cells. The
last attribute is important because with improvement in battery
chemistry, manufacturing process, cooling systems, and cell-to-cell
balancing circuitry, it is likely the cell variations will continue to

dx.doi.org/10.1016/j.jpowsour.2011.10.013
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:huxiaos@umich.edu
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Fig. 2. Configuration of the ac impedance tester.

Table 1
Main specifications of the LiNMC and LiFePO4 cells.

Type Nominal
capacity (Ah)

Nominal
voltage (V)

Upper cut-off
voltage (V)

Lower cut-off
voltage (V)

capacity. The hybrid pulse test is a sequence of pulse cycles. Each
pulse cycle is composed of the standard Hybrid Pulse Power Charac-
terization (HPPC) profile and a self-designed discharging/charging
Fig. 1. Configuration of the battery test bench.

ecrease, to such an extent that we may  feel comfortable (or be
riven economically) to measure and monitor the temperature and
oltage of every few cells instead of each and every cell. To real-
ze this vision, it is important to confirm that a model calibrated
ased on the measurements of one cell can be applied to predict
he behavior of several adjacent cells placed under the same load
nd are operating under similar conditions such as environmental
emperature.

In this paper, we study twelve commonly used lumped bat-
ery models. They are compared using multiple cell datasets we
cquired under different temperatures for two  types of Li-ion
ells. The multi-swarm particle swarm optimization (MPSO) [23]
s implemented to identify the optimal model parameters based on
he training data from a single cell (arbitrarily selected from eight
ells). Then, the usefulness of these models is compared by using
alidation test data obtained from eight cells of the same chemistry.
his process was repeated for two types of Li-ion batteries.

The remainder of this paper is organized as follows. In Section
, the experimental setup to acquire the data is described. In Sec-
ion 3, the twelve equivalent circuit battery models are described.
he MPSO-based model identification process is introduced in Sec-
ion 4. The model comparison results are discussed in Section 5,
ollowed by conclusions presented in Section 6.

. Experimental setup

.1. Battery testing systems

The experimental setup is shown in Fig. 1. It includes an
rbin BT2000 tester, a thermal chamber for environment con-

rol, a computer for user-machine interface and data storage, a
witch board for cable connection, and the battery cells. During the
harging/discharging, voltage, current, temperature of each cell is
easured and recorded at 10 Hz.
An impedance measurement system (see Fig. 2) was also

esigned to record the battery impedance behavior at various exci-
ation frequencies. It comprises a data acquisition unit for signal
eneration and data collection, a power amplifier for signal ampli-
cation, and two shunt resistors for current measurement. The
easurement of impedance is obtained from sinusoidal excita-

ions, in which both voltage and current in sinusoidal forms (with
c offset) are recorded and their complex quotient is computed as
he cell impedance. To reduce measurement noise, a convolution-
ased method is adopted to identify the phase delay of impedance
sing the Parseval’s Theorem for magnitude calculation [24]. Only

wo cells from each Li-ion cell types are tested and the sinusoidal
nput is modulated on top of a precisely generated dc offset to
nsure we are not charging or discharging the cells during the
LiNMC 0.94 3.70 4.20 2.50
LiFePO4 1.10 3.30 3.60 2.00

test. The sampling time is input frequency dependent and can vary
between 1/40 and 5 kHz.

2.2. Battery test schedule

Two types of cylindrical Li-ion cells are selected for our tests.
One is lithium nickel–manganese–cobalt oxide (LiNMC) UR14650P
cells from Sanyo and the other is lithium iron phosphate (LiFePO4)
APR18650M1A cells from A123. Eight cells each were purchased
on the open market. Their key specifications are shown in Table 1.
These cells were placed in cell holders in the thermal chamber. They
are independently tested using 16 channels of the battery tester. For
the cells of the same chemistry, the same loading profile is applied.

The test schedules shown in Fig. 3 are designed to generate rich
excitations for the two  types of cells. Each experimental procedure
takes about two weeks to finish. In each procedure, it begins with
a characterization test at temperature T = 10 ◦C, followed by two
identical tests conducted at T = 35 ◦C and T = 22 ◦C. A static capac-
ity test, a hybrid pulse test, a dc resistance test, a DST test and
a FUDS test are consecutively conducted in each characterization
test. The purpose of the static capacity test is to measure the cell
Fig. 3. Flow chart of the test schedule.
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Fig. 5. Current, voltage and SOC of the reference LiNMC cell in the training dataset
at  22 ◦C.

Fig. 6. Current, voltage and SOC of the reference LiNMC cell in a portion of the DST
dataset at 22 ◦C.
Fig. 4. Self-designed discharging/charging pulse profile for the LiNMC cells.

ulse profile. The self-designed profile is a combination of pulses
ith different amplitudes and durations. It serves two functions:

o move the cell SOC, and to excite the cell dynamically. The self-
esigned pulse profile for LiNMC cells is shown in Fig. 4. That for
iFePO4 cells is similar. The pulse amplitudes are merely enlarged to
chieve the same current rates as those for LiNMC cells. The dc resis-
ance test uses the standard testing program from Arbin to estimate
he internal resistance. The Dynamic Stress Test (DST) and Federal
rban Dynamic Schedule (FUDS) tests excite the cells in driving
ycle-based conditions. Between two adjacent test points in each
haracterization test the cells are charged or discharged to reach
he desirable initial SOC values (around 90%) and rested to reach
ell equilibrium. After these tests, the impedance test is conducted
o collect data for battery impedance spectrum analysis. Then, the
ging cycles are conducted at T = 22 ◦C. In each aging cycle, the cell
s charged or discharged at a constant rate until the cut-off voltages.

.3. Datasets for this work

The datasets collected in the three characterization tests for
resh cells in the first experimental procedure (before aging cycles)
re used for the model identification and comparison in this paper.
he hybrid pulse test datasets under three different temperatures
or the reference cells (LiNMC cell in Channel 17, LiFePO4 cell
n Channel 25) are used as the training datasets. The DST and
UDS datasets for the reference cells serve as the model validation
atasets. In addition, the hybrid pulse test, DST and FUDS datasets
nder three different temperatures for all the sixteen cells are used
o assess the generalization of the optimized models to multiple
ells. Since the SOC of the battery packs in electrified vehicles is not
llowed to be less than a certain threshold (e.g., 20%) due to bat-
ery life consideration, the portion of the test data below 10% SOC
n these datasets are not used in model comparison. The current,
oltage and SOC of the reference LiNMC cell in the training dataset
t T = 22 ◦C are shown in Fig. 5. Note the dataset below 10% SOC was
iscarded. Similar pre-processing was done for the DST and FUDS
atasets (see Figs. 6 and 7, a portion is showed to give more details).

. Model structures

A total of twelve equivalent circuit battery models are selected
rom the literature and used in the study. These models were
elected to form a comprehensive subset aiming to cover the

ajority of the lumped model templates studied in the past.

he effects of battery SOC and current are covered explicitly in
hese models. In addition, the hysteresis observed during dynamic
oading (mainly due to the Li-ion uneven distribution limited by

Fig. 7. Current, voltage and SOC of the reference LiNMC cell in a portion of the FUDS
dataset at 22 ◦C.
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Table 2
Twelve battery models.

Model Model equations and description

(1) The combined model [2] Vk = K0 − K1/zk − K2zk + K3 ln(zk) + K4 ln(1 − zk) − R0Ik
where Vk , zk and Ik are the battery terminal voltage, SOC and current, respectively; K0, K1, K2, K3 and K4 are parameters
for  the dependence between open circuit voltage (OCV) and SOC; R0 is the internal ohmic resistance which depends
on  the current direction. The optimization variable vector � = [K0, K1, K2, K3, K4, R+

0 , R−
0 ].

(2)  The simple model [2] Vk = OCV(zk) − R0Ik
where OCV(zk) represents the dependence between OCV and SOC in the form of a table. � = [Voc,1, . . . , Voc,12, R+

0 , R−
0 ].

(3)  The zero-state hysteresis
model [2]

Vk = OCV(zk) − R0Ik − skM, sk =

{
1, Ik > ε,

−1, Ik < −ε,

sk−1, |IK | ≤ ε,
where M is assumed to be a constant coefficient depicting the hysteresis level and ε is adequately small and positive.
�  = [Voc,1, . . . , Voc,12, R+

0 , R−
0 , M].

(4)  The one-state hysteresis
model [2]

hk+1 = exp(−|�Ik�t|)hk + [1 − exp(−|�Ik�t|)]H
Vk = OCV(zk) − R0Ik + hk

where hk is the hysteresis voltage, � is a decaying factor, �t is the sampling time and H is the maximum amount of
hysteresis voltage which is positive for charge and negative for discharge. � = [Voc,1, . . . , Voc,12, R+

0 , R−
0 , �, H+, H−].

(5)  The Enhanced
Self-correcting (ESC) model
(two-state low-pass filter)
[2]

[
f1,k+1

f2,k+1

hk+1

]
=

[
˛1 0 0

0 ˛2 0

0 0 exp(−|�Ik�t|)

][
f1,k

f2,k

hk

]
+

[
1 0

1 0

0 1 − exp(−|�Ik�t|)

][
Ik

H

]
Vk = OCV(zk) − R0Ik + hk + g1f1,k + g2f2,k

where f1 and f2 are two  states of a low-pass filter of the current; ˛1 and ˛2 are the diagonal elements of the
state-transition matrix of the filter. g1 and g2 are the elements of the output matrix of the filter, and a zero-dc gain
constraint is applied to them. � = [Voc,1, . . . , Voc,12, R+

0 , R−
0 , �, H+, H−, ˛1, ˛2, g1].

(6)  The Enhanced
Self-correcting (ESC) model
(four-state low-pass filter)
[2]

⎡
⎢⎢⎢⎣

f1,k+1

f2,k+1

f3,k+1

f4,k+1

hk+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

˛1 0 0 0 0

0 ˛2 0 0 0

0 0 ˛3 0 0

0 0 0 ˛4 0

0 0 0 0 exp(−|�Ik�t|)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f1,k

f2,k

f3,k

f4,k

hk

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

1 0

1 0

1 0

1 0

0 1 − exp(−|�Ik�t|)

⎤
⎥⎥⎥⎦

[
Ik

H

]

Vk = OCV(zk) − R0Ik + hk + g1f1,k + g2f2,k + g3f3,k + g4f4,k

where a four-state filter is used. � = [Voc,1, . . . , Voc,12, R+
0 , R−

0 , �, H+, H−, ˛1, ˛2, ˛3, ˛4, g1, g2, g3].

(7)  The first-order RC model
[12–14]

U1,k+1 = exp(−�t/�1)U1,k + R1[1 − exp(−�t/�1)]Ik

Vk = OCV(zk) − R0Ik − U1,k

where U1 and �1 = R1C1 are the voltage and time constant of the RC network. � = [Voc,1, . . . , Voc,12, R+
0 , R−

0 , R1, �1].

(8)  The first-order RC model
with one-state hysteresis
[19–21]

Vk = OCV(zk) − R0Ik − U1,k+hk

where � = [Voc,1, . . . , Voc,12, R+
0 , R−

0 , �, H+, H−, R1, �1].

(9)  The second-order RC model
[15–17]

Vk = OCV(zk) − R0Ik − U1,k − U2,k

where U2 and �2 = R2C2 are the voltage and time constant of the second RC network.
�  = [Voc,1, . . . , Voc,12, R+

0 , R−
0 , R1, �1, R2, �2].

(10) The second-order RC
model with one-state
hysteresis

Vk = OCV(zk) − R0Ik − U1,k − U2,k + hk

where � = [Voc,1, . . . , Voc,12, R+
0 , R−

0 , �, H+, H−, R1, �1, R2, �2].

(11)  The third-order RC model
[18]

Vk = OCV(zk) − R0Ik − U1,k − U2,k − U3,k

where U3 and �3 = R3C3 are the voltage and time constant of the third RC network.
�  = [Voc,1, . . . , Voc,12, R+

0 , R−
0 , R1, �1, R2, �2, R3, �3].

 U3,k +
 R−

0 , �,
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(12)  The third-order RC model
with one-state hysteresis
[22]

Vk = OCV(zk) − R0Ik − U1,k − U2,k −
where � = [Voc,1, . . . , Voc,12, R+

0 ,

iffusion) is included explicitly. The effect of temperature how-
ver is not captured. The effect of which can be captured through
emperature-dependent model parameters. These battery models
re summarized in Table 2.

. Identification of optimal model parameters

.1. Optimization variables for the battery models

Out of the twelve models, except for model 1, the OCV is mod-
led as a function of SOC, and Voc, j, j = 1, 2, . . . , 12 is used to
epresent the jth optimization variable for describing OCV. When

imulating the battery model, OCV is calculated by look-up table.
he model variables to be optimized for all the twelve battery mod-
ls are all summarized in Table 2. In this table, R+

0 and R−
0 are internal

hmic resistances for the discharge and charge, respectively; H+
 hk

 H+, H−, R1, �1, R2, �2, R3, �3].

and H− denote the maximum hysteresis voltages for the discharge
and charge, respectively. The bounds of the parameter vector to
identify, �L and �U, were specified based on prior knowledge of the
two types of Li-ion batteries. The bounds of the same parameters for
different models are kept the same for fair comparison. For exam-
ple, the upper bounds of R+

0 in all the models were set to 0.2 � and
0.1 � for LiNMC and LiFePO4 cells, respectively. It is important to
note that |˛j| < 1, j = 1, . . .,  4 is imposed to ensure stability of the
low-pass filters for the ESC models.

4.2. Optimization algorithm
To reduce the probability of trapped at a local minimum, the
PSO-based global optimization approach was  adopted. Compared
to genetic algorithm, another global optimization method used for
battery modeling [16,22], PSO has fewer parameters, has a more
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Table 3
The numerical process of the multi-swarm particle swarm optimization (MPSO) method for battery model optimization.

Step 1: The bounds of the parameter vector, �L and �U , are assigned and the generation index gen is set to 0.
Step  2: Within the space bound, randomly generate an initial swarm (population) P0 which comprises N particles, i.e., x0

1, . . . , x0
N

. Each particle represents a
candidate solution of the model parameters.

Step 3: Calculate F(P0), and record personal bests of particles, i.e., pbest0
1, . . . , pbest0

N , where F(·) is the objective function, half the sum of the squared voltage errors
of  the chosen model for the training dataset.

Step 4: If gen is less than the maximum generation, Mgen, perform the following steps (1)–(3).
(1)  Split the swarm. Firstly sort the particles in a descending order according to their superiority levels determined by the objective function values. Then, the first
particle is chosen as the local best of the first sub-swarm. Ns − 1 particles with the largest Euclidean distance from the local best are assigned to be the other
members of the first sub-swarm. Repeat this selection procedure for the remaining particles until the remaining particles are less than Ns so as to establish all the
sub-swarms.
(2)  Evolve each particle in each sub-swarm by taking advantage of the velocity and position update equations of Krohling and Coelho’s PSO. Note that the local best
in  each sub-swarm is updated with a probability of 85% to enhance the global search capability. The updated particle that violates the boundary constraint is
adjusted to meet the boundary constraint.

nal best of particles according to their superiority levels, i.e., pbestgen
1 , . . . , pbestgen

N
.

d the swarm evolution. Record the best particle in the final swarm and the best
ctor.
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RC models improves the average RMS  error by about 7.9% com-
pared to the first-order RC model without hysteresis. Adding RC
networks can also improve the model accuracy however adding
more complexity beyond 2RC network is not helpful.
(3) gen = gen + 1. Calculate F(·) for the updated swarm, and record updated perso
Step  5: If the generation index gen is equal to the maximum generation, Mgen, en

objective function value. The best particle is the optimized model parameter ve

ffective memory utilization, and is more efficient in maintaining
he diversity of the search candidates [25]. A hybrid multi-swarm
article swarm optimization (HMPSO) algorithm for constrained
ptimization was developed to improve the global search capabil-
ty of the standard PSO in [23]. In the new algorithm, the differential
volution (DE)-based mutation and swarm splitting concept are
ncorporated into the standard PSO. Since the DE-based mutation is
oo time-consuming for battery modeling on large datasets, MPSO
as applied without DE. For MPSO, at each generation, the swarm

s split into several sub-swarms and each sub-swarm evolves inde-
endently by taking advantage of the search equations of Krohling
nd Coelho’s PSO [26], resulting in very effective diversity of the
warm. The general framework of MPSO for the battery model
arameterization is shown in Table 3. The readers are referred to
23] for more details of the MPSO algorithm.

There are only three parameters to adjust for the MPSO algo-
ithm, shown in Table 4. These values were found to generate
ood optimization results in our cases. A large value was assigned
o the maximum generation variable, Mgen when identifying
ll the twelve models at the expense of slow computations.
or each model, the optimization algorithm was  individually
xecuted on the training datasets under three different temper-
tures so that the temperature dependence can be added to the
odel.

. Model optimization results

.1. Model comparison using the training and validation datasets

The objective function for the model parameter optimization
as defined for model accuracy, measured by the average root-
ean-squared (RMS) error between the test datasets and the

utput from the optimized models. Experimental results from all
hree temperatures are used. However, the model parameters are
llowed to change and be optimized for the three temperatures.

.1.1. LiNMC battery reference cell
The maximum, minimum and average RMS  errors of the twelve

odels optimized for the training datasets (hybrid pulse tests

nder three different temperatures) of the reference LiNMC cell
re shown in Fig. 8. The model number is as shown in Table 2. It
an be seen that the RC models are consistently more accurate than
he first six models. In addition, adding one-state hysteresis to the

able 4
he three key parameters of the MPSO algorithm.

Parameter Mgen N Ns

Value 10,000 60 8
Fig. 8. Model training performance for the reference LiNMC cell.
Fig. 9. Model validation performance for the reference LiNMC cell under the DST
datasets.
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ig. 10. Model validation performance for the reference LiNMC cell under the FUDS
atasets.

It is important to compare the model performance under unseen
alidation datasets, using which the model prediction capabili-
ies are better evaluated. The RMS  errors of the twelve models
ptimized for the hybrid pulse tests, but evaluated using the DST
atasets (validation datasets) under three different temperatures
re shown in Fig. 9. It can be seen that all twelve models have worse
erformance than under the training datasets. Among all twelve
odels, the zero-state hysteresis model has the worst validation

esult, indicating that its robustness might be a concern. Similar
o the training results shown in Fig. 8, the RC models show con-
istently better performance compared to the first six models. The
rst-order RC model is almost as good as more complex models
nder the validation datasets-which seems to suggest it is a good

hoice balancing between model robustness and complexity.

The RMS  errors of the twelve models under the FUDS datasets
another validation datasets) under three different temperatures

ig. 11. Voltage responses of the first-order RC model and the reference LiNMC cell
nder 22 ◦C, (a) one hybrid pulse cycle (training); (b) one DST cycle (validation) and
c)  one FUDS cycle (validation).
Fig. 12. Model training performance for the reference LiFePO4 cell.

are shown in Fig. 10.  Since the FUDS test is a driving cycle-based test,
the results are important. Again the first-order RC model stands out
as the best model, achieving good prediction accuracy while using
a simple model structure.

From the validations results above, we  see that while more com-
plicated models can achieve better accuracy under the training
datasets, they seem to be more complicated than necessary, and
their over-fitting characteristics does not help when the model is
exposed to validation datasets that it has not seen before. Consid-
ering both model accuracy and model robustness, the first-order
RC model is determined to be the best model for the LiNMC cell.
The voltage responses of the first-order RC model and the refer-
ence LiNMC cell for one cycle in each dataset are shown in Fig. 11.
The optimized battery model predicts cell voltage accurately.

While the numerical results clearly show the superior perfor-
mance of the first-order RC model, one cannot but ask the following
question: the low-pass filter in the ESC model seems to be con-

ceptually similar to the function of a single RC network. So why
is not the more complex model achieving better results under the
training dataset? The first reason is numerical problem. Despite

Fig. 13. Model validation performance for the reference LiFePO4 cell under the DST
datasets.
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ig. 14. Model validation performance for the reference LiFePO4 cell under the FUDS
atasets.

he fact we are using an optimization method with globally sit-
ated particle as search candidates, the solution is more prone
o be trapped into local minima for more complicated models.
ake the two-state low-pass filter in the ESC model as an exam-
le. Constraints |˛j| < 1, j = 1, 2(stability) are too loose. From the
ptimization result of the second-order RC model with one-state
ysteresis and ˛1 ∝ e−�t/R1C1 , ˛2 ∝ e−�t/R2C2 , we  know that ˛1, ˛2
re in the intervals of [0.95, 1] and [0.98, 1]. (It is extremely dif-
cult to know the two tight boundary constraints. Typically, we

ust know |˛j| < 1, j = 1, 2 from our prior knowledge.) After tighten-
ng the constraints on ˛1 and ˛2, the optimization results can be
mproved. From numerical optimization viewpoint, the RC models
re therefore better than the ESC models in terms of insensitiveness

o boundary constraints and avoiding local minima. Although the
ptimization results can be improved by tightening the boundary
onstraints on ˛1 and ˛2, it is still worse than that of the second-
rder RC model with one-state hysteresis. This may  be due to the

ig. 15. The voltage responses of the first-order RC model with one-state hysteresis
nd the reference LiFePO4 cell under 22 ◦C, (a) one hybrid pulse cycle (training); (b)
ne  DST cycle (validation) and (c) one FUDS cycle (validation).
Fig. 16. Model generalization performance under the hybrid pulse test datasets for
eight LiNMC cells.

zero-dc gain constraint for the ESC models which does not apply to
the RC networks.

5.1.2. LiFePO4 battery reference cell
The RMS  errors of the twelve models optimized for the training

datasets (the hybrid pulse power tests under three different tem-
peratures) of the reference LiFePO4 cell are shown in Fig. 12.  The
RC-network based models again show better performance com-
pared to the first six models. It also seems that adding a one-state
hysteresis to the RC-network models is helpful.

Again the optimized models are assessed using the DST and
FUDS cycles to validate the robustness of the obtained models. The
RMS  errors of the twelve models using the DST and FUDS datasets
under three different temperatures are shown in Figs. 13 and 14.  It
can be seen that the first-order RC model with one-state hysteresis

is preferred for the LiFePO4 cell, due to its balance between model
complexity and accuracy. The voltage responses of the first-order
RC model with one-state hysteresis and the reference cell for one
cycle in each subtest in the characterization test under 22 ◦C are

Fig. 17. Model generalization performance under the DST datasets for eight LiNMC
cells.
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ig. 18. Model generalization performance under the FUDS datasets for eight LiNMC
ells.

hown in Fig. 15.  Again the model prediction output is accurate
ven under validation datasets.

.2. Generalization to datasets from multiple cells

Traction battery pack in an electrified vehicle often consists of
undreds or even thousands of cells. Since safety is a major concern

or Li-ion batteries, cell-level management and control are very
mportant. For battery management, we can monitor and model
ach cell with its own sensors and models at the expense of sig-
ificant hardware and computation cost. This arrangement is used

n some early electrified vehicles because of the large cell-to-cell
ariations, caused by manufacturing variability, thermal gradient
nd other factors. With improved battery chemistry, manufactur-

ng process controls, improved cooling systems, and cell-to-cell
alancing circuitry, it is likely the cell variations will continue
o decrease, to such an extent that we will feel comfortable to

easure and monitor the temperature and voltage of every few

ig. 19. Model generalization performance under the hybrid pulse test datasets for
ight LiFePO4 cells.
Fig. 20. Model generalization performance under the DST datasets for eight LiFePO4

cells.

cells instead of each and every cell. Under this envisioned future
scenario, modeling each cell is unnecessary. Instead, it is possible
we will generalize the model established and adapted for a sin-
gle cell and use it to predict the behavior of several adjacent cells.
Therefore, it is important to see which model structure works well
when the model trained for one cell works on measured datasets
from other cells. Here, the models obtained from the hybrid pulse
testing datasets of the reference cells (LiNMC cell in Channel 17,
LiFePO4 cell in Channel 25) were used to predict the behavior of
other cells of the same chemistry. The ability to “extrapolate to
multiple cells” is measured by the maximum, minimum, and aver-
age RMS  errors using the datasets from all eight cells of the same
electrochemistry under the three different temperatures. The stan-
dard deviation of the RMS  error is also calculated to demonstrate
the spread of model error among eight cells.
5.2.1. LiNMC cell
The RMS  errors of the twelve models under the hybrid pulse test

datasets of all eight LiNMC cells are shown in Fig. 16,  all of which are

Fig. 21. Model generalization performance under the FUDS datasets for eight
LiFePO4 cells.
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 little higher than those in Fig. 8, as one would expect. The aver-
ge, min  and max  RMS  errors again show similar trend. Adding RC
etworks or one-state hysteresis to the first-order RC model

mproves the model generalization capability a little. The max-
mum improvement on the average RMS  error is approximately
.8%. The RMS  errors of the twelve models under the DST datasets
f all eight LiNMC cells are shown in Fig. 17.  Those under
he FUDS datasets are shown in Fig. 18.  It can be seen that
he first-order RC model achieves good accuracy with minimum
omplexity.

.2.2. LiFePO4 cell
Similar to the LiNMC cells, results for the hybrid pulse test,

ST and FUDS datasets of the eight LiFePO4 cells are shown in
igs. 19–21, respectively. The first-order RC model with one-state
ysteresis was again found to be the preferred choice.

. Conclusions

A systematic comparative study of twelve lumped battery
odels is conducted. The MPSO algorithm is applied to conduct

arameter optimizations. The model comparison is performed for
wo types of Li-ion cells, to assess their accuracies in both training
nd validation datasets, and generalization to multiple cells. Cells of
he same chemistry seem to have very similar behavior, especially
hen they are new. It is thus possible to generalize the model estab-

ished for a single cell to predict the behavior of several adjacent
ells. The ability for a model to be generalized is thus important.
ince complex models typically are more expensive and more sus-
eptible to uncertainties, models that are accurate enough and yet
imple are preferred. Comparison results indicate that the first-

rder RC model is preferred for LiNMC cells, while the first-order
C model with one-state hysteresis seems to be the best choice for
iFePO4 cells. The developed cell voltage models can be used, e.g.,
n SOC estimation in battery management systems.
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